Dimorphic Development and Alternation of Generations in the Cladocere.

Dr. G. O. Sars has discovered a remarkable dimorphism and alternation" of generations in Leptodora hyalince (" Om en dimorph Udvikling samt Generationsrexel hos Leptodore," Forhandlinger Vidensk.-Selsk. Christiania for 1873 , p. 15 , and plate). The development from the ordinary summer-eggs, as already described by E. l'. Miuller, is without metamorphosis and like that of ordinary Cladocera, the young when exeluded from the egg agreeing essentially with the adult; while, according to Sars's observations, the young are excluded from the winter-eggs in a very imperfect condition, quite unlike the known young of any other Cladocera, and pass through a marked postembryonal metamorphosis. In the earliest observed stage of the young of this form, the body is oborate, wholly without segmentation, the compound cye wanting, while there is a simple eye between the bases of the antennulæ, the swimming-arms (antennæ) well dereloped, and the six pairs of legs represented only by minute processes projecting scarcely beyond the sides of the body. But the most remarkable feature is the presence of a pair of appendages tipped with cilia and nearly as long as the body, which are eridently homologous with the mandibular palpi of other Crustaceans, although these appendages have always been supposed to be manting in the species of Cladocera. Two subsequent stages, gradually approaching the adult form, are deseribed. The adults from the winter-eggs have no vestige of the mandibular palpi left; yet the simple eye (which is wholly absent in ordinary indiriduals developed from summer-eggs) is persistent, and thus marks a distinct generation. Three stages of the young from winter-egrs are beautifully figured upon the plate accompanying the memoir.

This remarkable species has, still more recently, been made the subject of a very claborate memoir by Prof. Weismann of Freiburg ("Leber Bau und Lebenserscheinungen von Leptodora hyalina," Zeitschrift für wissensch. Zool. xxir., Sept. 1874, pp. 349-418, plates 33-38), who, howerer, had not observed the peculiar development of the winter-eggs. The occurrence of this genus in Lake Superior is noticed in this Journal, rol. vii. p. 161, 1574.-Silliman's American Journal, March 1575.

On the Actinix of the Oceanic Coasts of France. By M. P'. Fiscier.

The Actinix of the oceanic coasts of France (eomprising in that geographical region the Anglo-Norman isles) number thirty-one species:-Cerianthus membranaceus, Gmelin; Ethuardsia Harassii, Quatrefages; E. tumida, Quatref.; E. Beautempsi, Quatref.; E. callimorpha, Gosse; Halcampa chrysanthellum, Peach; Peachia undata, Gosse : P. triphylla, Gosse; Anemonia sulcata, Pennant; Aiptasia Couchi, Coeks; Actinia equina, Linné; Metridium dianthus, Ellis; Cereus pedunculatus, Pennant; Sagartia nivea, Gosse; S. viduata, Müller (including S. troglorlytes, Johnston): S. venusta, Ann. \& Mag. N. Hist. Ser. 4. Vol. xv.

Gosse ; S. miniata, (rosse ; S. sphyrodeta, Gosso ; S. pellucilu, Hollard; S. ignea, Fischer; S. erythrochila, Fischer; S. effecta, Limué; Adlamsia pulliata, Bohadseh: Chitonactis coronata, Gosso; Bunoles verrocosus, Pemant; B. Bulli, Coeks; B. Liscayensis, Fischer; Tealia folina, Limé Corynactis vividis, Allman; Palythoa Courhi, Johnston; and I. sulcatu, (iosse. Of these thirty-one species, twenty-fire (that is to say, about fire sixths) inhabit tho seas of Great Britain, and have been described in the ' Aetinologia Britannica' of Mr. Gosse. The six species which are wanting in Kingland are Cerianthus membranaceus, Edwardsia Itarassii, E. tumidu, Sagartia imnea, Š. crytluochila, and Bmodes biscryensis. The Cerienthus belongs to the Jiediterrancan fauna, as, perhaps, does also Sagartice erythrochila.

The twenty-five species of our coasts which inhabit the linglish seas only furnish three species which extend as far as the Mediterrancan; these are Anemoniu sulcata, Actinia equina, and Aclamsia palliata.

Our Freneh aetinological fauna nevertheless differs from that of the coasts of Great Britain by the absence of sereral genera which have an eminently boreal character, and which are found chiefly in the Shetlands and north of Scotland; such are the genera Plellia, Gregoria, Bolocera, Hormathia, Stomphia, Ilyantlus, Cupnea, Aurelianir, and Zoanthus. One can hardly cite three species of Actinire in the Mediterranean which are wanting on our oceanic coasts. We may conclude from this that, if our ocean shores possess many Actinix and few Gorgoniæ and Corals*, the Mediterrancan presents the opposite condition.

The bathymetric distribution of the Aetinix is very simple; they nearly all live in shallow water; they are only found in the littoral zones, and that of the Laminarix ($0-25$ metres) and Nullipores ($28-72$ metres). Beyond this point occur the greater part of the Corals which characterize the following zonc, that of lirachiopods and Corals ($72-184$ metres).

In the littoral zone Actinia equina, Anemonia suleata, Sargartia ignea, S. erythrochila, Bunodes verrucosus, Pulythoa sulcata, \&e. chiefly live.

The Laminarion zone is principally inhabited by the non-adherent Actinix, as well as by Metridium dianthus, Suyartia sphyyrodeta, S. pellucida, \&e.

In the zone of Nullipores, or of the great Buccina, wo dredge up on shells Sagaria effecta, S. viduata, Aelamsia palliata, Chitonactis coronata, and Pulythoa Couchi.

All zoologists who have attended to the specific distinction of the Actinix have sought to establish the number of cycles and the number of tentacles in each cycle. The number of cycles is not absolute; it is not uncommon to find one eycle more or less in adult specimens of the same species: thus Tealia felina has five

[^0]cyeles $(10,10,20,40,80)$ on the coasts of Normandy, and only four cyeles ($10,10,20,40$) on the English coasts*; but I attach little importance to this fact.

As to the number of tentacles in each eycle, it deserves careful examination ; if anomalies exist, if certain individuals escape from all rule, it is none the less evident that one may point out archetypes for the greater number of species.

1. The type with 6 tentacles and its multiples ($12,24,48, \&<0$.) is the commonest; it is this that has induced somo observers to suppose that all the Actinix were derived from it. From the obserrations of Mr. Gosse, and from my own, this type exists in about twenty Actinix of the European seas. The Bunodes, among others, may be considered as perfect Hexactinir.
2. The type with 8 , and multiples of 8 , tentacles is very frequent. It is indicated for nine species, to which, probably, the Cerianthi may be added.
3. The type with 10 tentacles is only seen in Tealia felina \dagger.
4. Palythoo sulcuta alone has 11 tentacles.
5. These rarious types combine among themselves; thus the formula of Eilwardsia carmea would be $8,8,12$, and that of Corynactis viriclis $16,24,32,32$.
6. Lastly, there exist indeterminate types; must we refer to type $6,12, \&$ c., or to a type 9,18 , and its multiples, the two following species-Anemonia sulcata (36, 36, 36, 72) and Myanthus Mitchelli $(18,18)$? What is the type of Aureliania angusta, of which the marginal series is composed of 42 tentacles? Palythoo Couchi has, according to my observations, 2 cyeles of 14-15 tentacles. Mr. Gosse attributes to it 24 tentacles $(12,12)$ in the young; and 28 $(14,14)$ in the adults, which would prove that at one time this species is a Hexactinia.

These facts make one think that, in the zoological group of the Actinix, the number of tentacles has not the value that has been attributed to it. The type has not eren the importance of a generie character, since in the genera Sagartia, Phellia, Halcampa, and Eitwardsia certain species have 8 , and others 12 tentacles and their multiples.

The rariability of the number of tentacles is explained by the embryogeny of the Aetinix, the embryo having successively 4, 6, 8 , 10 , and 12 dissepiments and tentacles. By assuring an arrest of development at each of these periods, we obtain the various types which correspond to them ; and in certain species the normal combination of the two types (Edwardsia camea and Corynactis viridis) faithfully represents the normal development of a Hexactinia, which passes from 8 to 12 dissepiments and tentacles. Seeing how much the tentacular type paries in the Aetinix, one may also doubt the importance of the number of systems and eyeles in the Corals.

[^1]Nevertheless I am struek with this circumstance, that the rugose Corals, with a tetrameral type, are hardly ever found, except in the transition-rocks; they therefore preceded the secondary Corals of tho hexameral trpe, just as in the embryos of our living Aetinix we see appear 4 and then 6 tentacles. The history of the organisms on the surface of the earth consequently resembles the derelopment of an existing animal.

Some species of the Actinix seem to be reproduced with the greatest faeility by means of little fragments abandoned by the foot. I hare aseertained this process of multiplication in all the indiriduals of Sagartic pellucild* that I kept in captivity in 1572 and 18.4. Diequemare diseorered the strange fact in Metridium clianthus.

Spontancous scissiparity is, on the contrary, the most common mode of propagation in Sagartia ignea. I hare obserred it also in Anemonia sulcata \dagger. It nerer takes place in Segartia efferta, and in many other species which I have examined. The tendeney to scissiparity and to reproduction by means of the fragments of the foot would have nearly the value of a specific eharacter.-Comptes Rendus, Norember 23, 1574, p. 1207.

Action of Light on the Development of the Foung of Frogs.

M. Thury took the eggs of Rana temporaria and placed them all under precisely the same favourable circumstances, exeept that while part receired light through colourless glass, another part received it through green glass. The former developed rapidly, and by the end of May had a length of four centimetres, and well developed hind legs in most of them ; while the latter were slowly developed, blackish in colour, hardly had a length of two centimetres by the end of May, and were without a trace of the hind legs. By the 10th of June the former had their fore legs and some were changed to frogs; the latter, still black, had no trace of legs, and hreathed almost exclusirely by means of their gills. By the 15th of July all the former had become frogs; but those of the latter still had no legs, and by the 2nd of August ther were all dead without a trace of legs haring appeared. Some of the young of the latter lot, transferred to the ressel of the former on the 15th of July, finished their metamorphosis. At the same time some of the former transferred to the ressel containing the latter continued to develop, showing the influence of the first impulse in their development.-I'Institut, Dec. 23, 1874.

* On the 23rd of August, 1872, a Sagartia pellucida abandoned about ten fracments of the foot; on the 25 th of August they became rounded; on the 5th of September one of them bore 8 tentaeles; on the i th of September the same fragment presented 15 or 16 tentacles.
† On the 18th of September, 1874, an Anemonia sulcata divided spontaneously, brought together its divided integuments; on the 21 st of September the new-formed disk spread out, and the rudiments of the new tentacles were seen; on the 28th of September there were 20 tentacles.

[^0]: * The Corals of our oceanic shores are Caryophyllia Smithi, Dentrophyllia comigera, Desmophyllum criste-yalli, and Paracyathus striatus. The Gorgoniso are Gorgonia verrucosa, Iterogorgiu rhizomorphu, and Mericere placomus.

[^1]: * In the same way Sayartia sphyrodeta has 5 eycles $(8,8,16,32,64)$ on our coasts, and 4 ercles in England (8, 8, 16, 16), according to Gosse.
 \dagger L. Agassiz has discorered in America a species (Rhodactinia Davisii) of the same type. Its embryos have 10 tentacles only.

